# Rough Sets in Data Mining \& Databases: 

Foundations \& Applications
Tutorial @ IJCRS 2018

Dominik Ślęzak \& Arkadiusz Wojna
(Part I)

## Rough Sets

- The theory of rough sets founded in early 80 -ties by Professor Zdzisław Pawlak provides the means for handling incompleteness \& uncertainty in data
- In the process of knowledge discovery, one can search for decision reducts, which are irreducible subsets of attributes that determine decision values
- Dependencies in data can be expressed in terms of, e.g., discernibility or rough set approximations
- There are also rough-set-inspired computational models, such as rough clustering, rough SQL, etc.


## Rough Sets \& Data

|  | Outlook | Temp. | Humid. | Wind | Sport? |
| :---: | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | Sunny | Hot | High | Weak | No |
| $\mathbf{2}$ | Sunny | Hot | High | Strong | No |
| $\mathbf{3}$ | Overcast | Hot | High | Weak | Yes |
| $\mathbf{4}$ | Rain | Mild | High | Weak | Yes |
| $\mathbf{5}$ | Rain | Cold | Normal | Weak | Yes |
| $\mathbf{6}$ | Rain | Cold | Normal | Strong | No |
| $\mathbf{7}$ | Overcast | Cold | Normal | Strong | Yes |
| $\mathbf{8}$ | Sunny | Mild | High | Weak | No |
| $\mathbf{9}$ | Sunny | Cold | Normal | Weak | Yes |
| $\mathbf{1 0}$ | Rain | Mild | Normal | Weak | Yes |
| $\mathbf{1 1}$ | Sunny | Mild | Normal | Strong | Yes |
| $\mathbf{1 2}$ | Overcast | Mild | High | Strong | Yes |
| $\mathbf{1 3}$ | Overcast | Hot | Normal | Weak | Yes |
| $\mathbf{1 4}$ | Rain | Mild | High | Strong | No |

IF (H=Normal)
AND (T=Mild)
THEN (S=Yes)

## It corresponds to a data block included in the positive region of the decision class "Yes"

## Rules \& Approximations

|  | Outlook | Temp. | Humid. | W ind | Sport? |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Sunny | Hot | High | W eak | No |
| 2 | Sunny | Hot | High | Strong | No |
| 3 | Overcast | Hot | High | W eak | Yes |
| 4 | Rain | Mild | High | W eak | Yes |
| 5 | Rain | Cold | Normal | W eak | Yes |
| 6 | Rain | Cold | Normal | Strong | No |
| 7 | Overcast | Cold | Normal | Strong | Yes |
| 8 | Sunny | Mild | High | W eak | No |
| 9 | Sunny | Cold | Normal | W eak | Yes |
| 10 | R ain | M ild | Normal | W eak | Yes |
| 11 | Sunny | M ild | Normal | Strong | Yes |
| 12 | Overcast | M ild | High | Strong | Yes |
| 13 | Overcast | Hot | Normal | W eak | Yes |
| 14 | Rain | Mild | High | Strong | No |



## Approximations \& Regions

Negative Region for $X$
Boundary Region for $X$

Positive
Region
for $X$

> Lower Approximation: Objects certainly in $X$ (the exact rules for $X$ )

Upper Approximation: Objects that may be in X (the rules, which don't exclude X )

## Approximations - Extensions



- Indiscernibility classes can be almost in X (VPRS model)
- It does not need to be based on equivalences (DRSA, tolerance, covering models)


# Rough Sets in Data Mining \& Databases: <br> Foundations \& Applications 

The Idea of Reducts

## Attribute Selection \& Reducts

- Do we need all attributes?
- Do we need to store the entire data?
- Is it possible to avoid a costly test?

Reducts are minimal subsets of attributes which contain a necessary portion of information from the set of all attributes. They are, however, (NP-)hard to find.

- Efficient and robust heuristics exist for reduct construction task
- Searching for reducts may be done efficiently with the use of, for example, evolutionary computation
- Overfitting can be avoided by considering several reducts, pruning rules and lessening constraints for keeping information


## Attribute Selection \& Approximations



- Approximations will (or will not!!!) change if we use a different subset of attributes to produce them
- Positive region generated by smaller subsets may decrease


## Selection, Extraction, Reduction...

- Many tools for extracting possibly minimal amount of new features from original data
- For example, PCA provides new features as linear combinations of original features
- However, linear combinations still involve many original attributes in their definitions
- It would be better to start with rough set attribute reduction and then apply PCA


## Illustration: Rules for $\{\mathrm{O}, \mathrm{H}, \mathrm{T}, \mathrm{W}\}$

- There are 14 rules supported in data
- However, the number of all possible combinations of conditions is 36
- We would not know how to classify some new cases with unseen combinations
- For instance:

$$
\mathrm{O}=\text { Sunny, } \mathrm{T}=\mathrm{Hot}, \mathrm{H}=\text { Normal, W=Weak }
$$

## Illustration: Rules for $\{\mathrm{O}, \mathrm{H}, \mathrm{W}\}$

- O=Sunny \& H=High \& W=Weak => S=No
- O=Sunny \& H=High \& W=Strong => S=No
- O=Overcast \& H=High \& W=Weak => S=Yes
- O=Rain \& H=High \& W=Weak => S=Yes
- O=Rain \& H=Normal \& W=Weak => S=Yes
- O=Rain \& H=Normal \& W=Strong => S=No
- O=Overcast \& H=Normal \& W=Strong => S=Yes
- O=Sunny \& H=Normal \& W=Weak =>S=Yes
- O=Sunny \& H=Normal \& W=Strong => S=Yes
- O=Overcast \& H=High \& W=Strong => S=Yes
- $\mathrm{O}=$ Overcast \& $\mathrm{H}=$ Normal \& $\mathrm{W}=$ Weak $=>\mathrm{S}=$ Yes
- O=Rain \& H=High \& W=Strong => S=No


# Rough Sets in Data Mining \& Databases: <br> Foundations \& Applications 

The Idea of Discernibility

## How to Discern Between Objects?

|  | Outlook | Temp. | Humid. | Wind | Sport? |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | Sunny | Hot | High | Weak | No |
| $\mathbf{2}$ | Sunny | Hot | High | Strong | No |
| $\mathbf{3}$ | Overcast | Hot | High | Weak | Yes |
| $\mathbf{4}$ | Rain | Mild | High | Weak | Yes |
| $\mathbf{5}$ | Rain | Cold | Normal | Weak | Yes |
| $\mathbf{6}$ | Rain | Cold | Normal | Strong | Ne |
| $\mathbf{7}$ | Overcast | Cold | Normal | Strong | Yes |
| $\mathbf{8}$ | Sunny | Mild | High | Weak | No |
| $\mathbf{9}$ | Sunny | Cold | Normal | Weak | Yes |
| $\mathbf{1 0}$ | Rain | Mild | Normal | Weak | Yes |
| $\mathbf{1 1}$ | Sunny | Mild | Normal | Strong | Yes |
| $\mathbf{1 2}$ | Overcast | Mild | High | Strong | Yes |
| $\mathbf{1 3}$ | Overcast | Hot | Normal | Weak | Yes |
| $\mathbf{1 4}$ | Rain | Mild | High | Strong | No |

$\{\mathrm{O}, \mathrm{T}, \mathrm{H}\}$ is not enough: it doesn't discern $(5,6)$
$\{T, H, W\}$ is not enough: it doesn't discern $(6,7)$
$\{\mathrm{O}, \mathrm{W}\}$ is not enough: it doesn't discern $(8,9)$

The only reducts are $\{\mathrm{O}, \mathrm{T}, \mathrm{W}\}$ and $\{\mathrm{O}, \mathrm{H}, \mathrm{W}\}$. They discern all the pairs of objects with different decisions and cannot be further reduced.

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | IIIII | IIII | Discernibility Matrix |  |  |  |  |  |
| 2 | IIIII | 11111 |  |  |  |  |  |  |
| 3 | - | ow | IIIII | IIIII | IIIII | IIIII | IIIII | 1111 |  |  |  |  |  |  |
| 4 | от | ${ }_{\text {¢ }}^{\text {w }}$ | IIIII | IIIII | IIIII | IIIII | IIIII | 11111 |  |  |  |  |  |  |
| 5 | ${ }_{\text {O }}^{\text {H }}$ | $\begin{array}{\|l\|} \hline \text { OT } \\ \text { HW } \end{array}$ | IIIII | IIIII | IIII | IIIII | IIIII | IIIII | IIIII | IIIII | IIIII | 1111 | IIIII | IIII |
| 6 | IIIII | 1111 | $\begin{aligned} & \hline \begin{array}{l} \text { OT } \\ \mathrm{HW} \end{array} \end{aligned}$ | $\begin{array}{\|c\|c\|} \hline \mathrm{TH} \\ \hline \end{array}$ | w | IIIII | 11111 | IIIII |
| 7 | ${ }_{\text {OT }}^{\text {OT }}$ | ${ }_{\text {O }}^{+}$ | IIIII | IIIII | IIIII | - | IIIII |
| 8 | IIIII | IIIII | от | - | $\underset{\mathrm{H}}{\mathbf{O}}$ | IIIII | $\begin{aligned} & \hline \text { OT } \\ & \text { HW } \end{aligned}$ | IIIII | IIIII | IIIII | IIIII | 11111 | IIIII | IIIII |
| 9 | H | ${ }_{\text {W }}^{\text {w }}$ | IIIII | IIIII | 11111 | ow | IIIII | тн | IIIII | 11111 | IIIII | 1111 | 111 | IIIII |
| 10 | ${ }_{\text {OT }}^{+}$ | $\stackrel{\text { OT }}{\text { HW }}$ | IIIII | IIIII | 11111 | tw | IIIII | он | 11111 | 11111 | IIIII | 11111 | IIIII | 11 II |
| 11 | $\underset{\mathrm{w}}{\mathrm{TH}}$ | тн | IIIII | IIIII | 11111 | от | IIIII | нw | IIIII | 11111 | IIIII | 11111 | IIIII | III |
| 12 | ${ }_{\text {\% }}^{\text {w }}$ | ot | 11111 | 11111 | 11111 | $\begin{array}{\|l\|} \hline{ }_{H}^{\top T} \end{array}$ | IIIII | ow | IIIII | IIIII | IIIII | IIIII | IIIII | IIIII |
| 13 | О H | $\begin{aligned} & \mathrm{OH} \\ & \mathrm{w} \end{aligned}$ | 11111 | IIIII | 11111 | $\begin{array}{\|l\|l\|} \hline \begin{array}{l} \mathrm{w} \\ \hline \end{array} \\ \hline \end{array}$ | 1111 | $\begin{aligned} & \hline{ }_{\mathrm{H}}^{\mathrm{H}} \end{aligned}$ | 1111 | 11111 | 11111 | 1111 | IIIII | IIIII |
| 14 | IIIII | IIIII | ${ }_{\text {\% }}^{\text {w }}$ | w | $\underset{\text { TH }}{\text { W }}$ | IIIII | ${ }_{\text {H }}^{\text {H }}$ | IIIII | $\xrightarrow{\text { OT }} \mathrm{H}$ | hw | он | - | OT HW | IIIII |

## What Do We Want to Discern?

- Generalized decision function generated by subset of attributes $\mathrm{B} \subseteq \mathrm{A}$ labels each object $\mathrm{u} \in \mathrm{U}$ with a set of its possible decision values:

$$
\partial_{\mathrm{B}}(\mathrm{u})=\left\{\mathrm{d}(\mathrm{x}): \forall_{\mathrm{a} \in \mathrm{~B}} \mathrm{a}(\mathrm{u})=\mathrm{a}(\mathrm{x})\right\}
$$

- $\partial$-reduct is an irreducible subset $\mathrm{B} \subseteq \mathrm{A}$ such that:

$$
\forall_{\mathrm{u} \in \mathrm{U}} \partial_{\mathrm{B}}(\mathrm{u})=\partial_{\mathrm{A}}(\mathrm{u})
$$

or equivalently:

$$
\forall_{x, y \in U} \partial_{A}(x) \neq \partial_{A}(y) \rightarrow \exists_{a \in B} a(x) \neq a(y)
$$

- $\mathrm{B} \subseteq \mathrm{A}$ is $\partial$-reduct, if and only if it is an irreducible subset of attributes such that a multi-valued dependency (MVD) $B \rightarrow \rightarrow\{d\}$ holds in data


## Case Study: Survival Analysis

| $u$ | \# | ttr | St ${ }_{l}$ | st $t_{\text {cr }}$ | loc | $[u]_{C} \mid$ | $\left\|[u]_{C} \cap d e f\right\|$ | $[u]_{C} \cap u n k \mid$ | $[u]_{C} \cap s u c \mid$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | only | T3 | cN1 | larynx | 25 | 15 | 4 | 6 |
| 4 | 1 | after | T3 | cN1 | larynx | 38 | 8 | 18 | 12 |
| 24 | 1 | radio | T3 | cN1 | larynx | 23 | 6 | 7 | 10 |
| 28 | 1 | after | T3 | cN0 | throat | 18 | 4 | 8 | 6 |
| 57 | 1 | after | T4 | cN1 | larynx | 32 | 12 | 14 | 6 |
| 91 | 1 | after | T3 | cN1 | throat | 35 | 5 | 16 | 14 |
| 152 | 1 | only | T3 | cN0 | larynx | 27 | 9 | 14 | 4 |
| 255 | 1 | after | T3 | cN0 | larynx | 15 | 2 | 6 | 7 |
| 493 | 1 | after | T3 | cN1 | other | 19 | 6 | 7 | 6 |
| 552 | 2 | after | T4 | cN2 | larynx | 14 | 6 | 3 | 5 |

In this case we operated with distributions of rough membership functions (data-derived probabilities):

$$
\mu_{d}^{C}(u)=\left\langle\frac{\mid u]_{C} \cap \operatorname{def} \mid}{\left|[u]_{C}\right|}, \frac{\left|[u]_{C} \cap u n k\right|}{\left|[u]_{C}\right|}, \frac{\left|[u]_{C} \cap s u c\right|}{\left|[u]_{C}\right|}\right\rangle
$$

## It is not only about Discernibility Matrices...

- Selection Constraints:
- Keep sufficiently good approximations of decision classes
- Discern between (almost) all pairs of objects with different decision values
- Optimization Goals:
- Find subsets which induce minimum amount of rules
- Find ensembles of subsets which work well together
- Algorithms \& Structures:
- Greedy, randomized, nature-inspired, Boolean, working on feature clusters
- Discernibility matrices, sorting, hashing, MapReduce, FPGA, SQL-based scripts


# Rough Sets in Data Mining \& Databases: <br> Foundations \& Applications 

Approximate Attribute Reduction

## Fundamental Idea

- It is worth reducing irrelevant attributes and simplifying obtained decision rules
- Reduction (simplification) should not decrease the overall accuracy of rules
- In real-world situations, we may agree to slightly decrease the quality, if it leads to significantly simpler classification model


## Approximate Discernibility

- For highly inconsistent data, we can focus on discerning only these pairs of objects that have significantly distant distributions of rough membership functions - then, after attribute reduction, new distributions will be close to the original distributions
- For numeric data, we can employ fuzzy discernibility (dissimilarity) and request that discernibility degrees for pairs of objects with different decision values do not decrease significantly after reduction


## Dependency Functions / Criteria

- We can specify a function

$$
\mathrm{M}: \mathrm{P}(\mathrm{~A}) \rightarrow \mathfrak{R}
$$

measuring influence of A's subsets on d.

- $B \subseteq A$ is an $(M, \varepsilon)$-approximate reduct, if

$$
M(B) / M(A) \geq 1-\varepsilon
$$

and none of its proper subsets holds it.

- It is important for M to be monotonic

$$
M(B) \geq M(C) \quad C \subseteq B
$$

## Rough-Set-Inspired Examples

- Cardinality of positive region induced by B
- Number of pairs of objects with different decision values that are discerned by B
- Measures based on cardinalities of generalized decision functions:
- „ $\partial$-gini index":

$$
\frac{1}{|U|} \sum_{u \in U} \frac{1}{\left|\partial_{\mathrm{B}}(u)\right|}
$$

- „$\partial$-conditional entropy": $\frac{1}{|\mathrm{U}|} \sum_{\mathrm{u} \in \mathrm{U}} \log \left(\left|\partial_{\mathrm{B}}(\mathrm{u})\right|\right)$
- „${ }^{\prime}$-Dempster-Shafer": $\quad \frac{1}{|U|} \sum_{u \in U} \frac{1}{2^{\left|\partial_{B}(u)\right|-1}}$


## o-GA for Approximate Reducts

- Genetic part, where each chromosome encodes a permutation of the attributes
- Heuristic part, where permutations are put into the following algorithm
REDORD algorithm:

1. $\sigma:\{1, . .,|A|\} \rightarrow\{1, . .,|A|\}, B_{\sigma}=A$
2.For $\mathrm{i}=1$ to $|\mathrm{A}|$ repeat $3 \& 4$
2. Let $\mathrm{B}_{\sigma} \leftarrow \mathrm{B}_{\sigma} \backslash\left\{\mathrm{a}_{\sigma(\mathrm{i})}\right\}$
4.If not $B_{\sigma} \Rightarrow_{\varepsilon}$ d undo 3
$\Rightarrow_{\varepsilon}$ means the given attribute set determines approximately the decision d

# Rough Sets in Data Mining \& Databases: <br> Foundations \& Applications 

High-Dimensional Data Sets

## Case Study: Gene Expressions



|  | Exp 1 | Exp 2 | Exp 3 | Exp 4 | Exp 5 | Exp 6 |
| :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: |
| Gene 1 | -1.2 | -2.1 | -3 | -1.5 | 1.8 | 2.9 |
| Gene 2 | 2.7 | 0.2 | -1.1 | 1.6 | -2.2 | -1.7 |
| Gene 3 | -2.5 | 1.5 | -0.1 | -1.1 | -1 | 0.1 |
| Gene 4 | 2.9 | 2.6 | 2.5 | -2.3 | -0.1 | -2.3 |
| Gene 5 | 0.1 |  | 2.6 | 2.2 | 2.7 | -2.1 |
| Gene 6 | -2.9 | -1.9 | -2.4 | -0.1 | -1.9 | 2.9 |

- Thousands of genes-attributes to analyze
- Number of experiments-objects quite low
- Simple knowledge representation needed
- Black-box approaches unacceptable
- Standard discretization unacceptable
- Rules too detailed for this level

|  | a | b | c | d |
| :---: | :---: | :---: | :---: | :---: |
| u1 | 3 | 7 | 3 | 0 |
| u2 | 2 | 1 | 0 | 1 |
| u3 | 4 | 0 | 6 | 1 |
| u4 | 0 | 5 | 1 | 2 |

$\operatorname{POS}\left(a^{*}, b^{*}\right)=\operatorname{POS}\left(a^{*}, b^{*}, c^{*}\right)$
POS $\left(a^{*}\right) \subset \operatorname{POS}\left(a^{*}, b^{*}, c^{*}\right)$
$\operatorname{POS}\left(\mathrm{b}^{*}\right) \subset \operatorname{POS}\left(\mathrm{a}^{*}, \mathrm{~b}^{*}, \mathrm{c}^{*}\right)$

IF $a \geq 3$ AND $b \geq 7$ THEN $d=0$
IF $a \geq 3$ AND $b<7$ THEN $d=1$ IF $a \geq 2$ AND $b<1$ THEN $d=1$ IF $a<2$ AND $b \geq 1$ THEN $d=2$ IF $a \geq 4$ AND $b \geq 0$ THEN $d=1$ IF $a \geq 0$ AND $b<5$ THEN $d=1$

|  | $a^{*}$ | $b^{*}$ | $C^{*}$ | $d^{*}$ |
| :---: | :---: | :---: | :---: | :---: |
| $(u 1, u 1)$ | $1+$ | $1+$ | $1+$ | 0 |
| $(u 1, u 2)$ | $1-$ | $1-$ | $1-$ | 1 |
| $(u 1, u 3)$ | $1+$ | $1-$ | $1+$ | 1 |
| $(u 1, u 4)$ | $1-$ | $1-$ | $1-$ | 2 |
| $(u 2, u 1)$ | $2+$ | $2+$ | $2+$ | 0 |
| $(u 2, u 2)$ | $2+$ | $2+$ | $2+$ | 1 |
| $(u 2, u 3)$ | $2+$ | $2-$ | $2+$ | 1 |
| $(u 2, u 4)$ | $2-$ | $2+$ | $2+$ | 2 |
| $(u 3, u 1)$ | $3-$ | $3+$ | $3-$ | 0 |
| $(u 3, u 2)$ | $3-$ | $3+$ | $3-$ | 1 |
| $(u 3, u 3)$ | $3+$ | $3+$ | $3+$ | 1 |
| $(u 3, u 4)$ | $3-$ | $3+$ | $3-$ | 2 |
| $(u 4, u 1)$ | $4+$ | $4+$ | $4+$ | 0 |
| $(u 4, u 2)$ | $4+$ | $4-$ | $4-$ | 1 |
| $(u 4, u 3)$ | $4+$ | $4-$ | $4+$ | 1 |
| $(u 4, u 4)$ | $4+$ | $4+$ | $4+$ | 2 |

## Adaptive Clustering / Reduction



- Frequent occurrence of representatives in reducts yields splitting clusters
- Rare occurrence of pairs of close representatives yields merging clusters

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | IIIII | IIII |  |  |  |  |  |  |
| 2 | IIIII |  |  |  |  |  |  |
| 3 | o | ow | IIII | IIIII | IIII | IIII | IIIII |  |  |  |  |  |  |  |
| 4 | OT | $\begin{aligned} & \hline \mathrm{OT}_{\mathrm{w}} \end{aligned}$ | IIIII | IIIII | IIIII | IIIII | IIIII |  |  |  |  |  |  |  |
| 5 | $\mathrm{O}_{\mathrm{H}}^{\top}$ | $\begin{aligned} & \hline \text { OT } \\ & \text { HW } \end{aligned}$ | IIIII |
| 6 | IIIII | IIIII | $\begin{aligned} & \hline \begin{array}{l} \text { OT } \\ \mathrm{HW} \end{array} \end{aligned}$ | $\begin{aligned} & \mathrm{TH} \\ & \mathrm{w} \end{aligned}$ | w | IIIII | IIIII | IIII | IIIII | IIIII | IIIII | IIIII | IIIII | IIIII |
| 7 | $\begin{aligned} & \text { OT } \\ & \text { HW } \end{aligned}$ | $\underset{H}{O_{H}^{\top}}$ | IIIII | IIIII | IIIII | - | IIIII |  |
| 8 | IIIII | IIIII | от | $\bigcirc$ | ${ }_{\mathrm{O}}^{\mathrm{H}}$ | IIIII | $\begin{aligned} & \hline \text { OT } \\ & \mathrm{HW} \end{aligned}$ | IIIII |
| 9 | т ${ }^{\text {r }}$ | $\begin{gathered} \mathrm{TH} \\ \mathrm{w} \end{gathered}$ | IIIII | IIIII | IIII | ow | IIIII | тH | IIII | IIIII | III | IIIII | IIIII | IIII |
| 10 | $\mathrm{O}_{\mathrm{H}}^{\mathrm{T}}$ | $\begin{aligned} & \hline \text { OT } \\ & \text { HW } \end{aligned}$ | IIIII | IIIII | IIIII | TW | IIIII | он | IIIII | IIIII | IIII | IIIII | IIIII |  |
| 11 | $\begin{gathered} \mathrm{TH} \\ \mathrm{w} \end{gathered}$ | т ${ }^{\text {¢ }}$ | IIIII | IIIII | IIIII | от | IIIII | Hw | IIIII | IIIII | IIIII | IIIII | IIIII | IIIII |
| 12 | $\begin{aligned} & \hline 0 \mathrm{~T} \\ & \mathrm{w} \end{aligned}$ | от | IIIII | IIIII | IIIII | $\begin{aligned} & \hline \mathrm{O}_{\mathrm{H}}^{\top} \end{aligned}$ | IIIII | ow | IIIII | IIIII | IIIII | IIIII | IIIII |  |
| 13 | он | $\begin{aligned} & \mathrm{OH} \\ & \mathrm{w} \end{aligned}$ | IIIII | IIIII | IIIII | $\begin{aligned} & \mathrm{o}_{\mathrm{T}}^{\mathrm{w}} \\ & \hline \end{aligned}$ | IIIII | $\begin{gathered} \mathrm{O}_{\mathrm{T}}^{\mathrm{H}} \end{gathered}$ | IIIII | IIIII | IIIII | IIIII | IIIII |  |
| 14 | IIIII | IIIII | $\begin{aligned} & \hline \mathrm{O}_{\mathrm{w}} \end{aligned}$ | w | $\begin{aligned} & \hline \text { TH } \\ & \text { w } \end{aligned}$ | IIIII | $\begin{gathered} \mathrm{O}_{\mathrm{H}}^{\top} \end{gathered}$ | IIIII | $\begin{aligned} & \hline \text { OT } \\ & \text { HW } \end{aligned}$ | HW | О H | o | OT HW | III |

## Attribute Clustering

Exemplary decision system $\mathbb{A}=(U, A \cup\{d\}):$

|  | $a_{1}$ | $a_{2}$ | $a_{3}$ | $a_{4}$ | $a_{5}$ | $a_{6}$ | $a_{7}$ | $a_{8}$ | $d$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $u_{1}$ | 1 | 2 | 2 | 0 | 0 | 1 | 0 | 1 | 1 |
| $u_{2}$ | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
| $u_{3}$ | 1 | 2 | 0 | 1 | 0 | 2 | 1 | 0 | 1 |
| $u_{4}$ | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| $u_{5}$ | 2 | 0 | 1 | 0 | 2 | 1 | 0 | 0 | 1 |
| $u_{6}$ | 1 | 0 | 2 | 0 | 2 | 0 | 0 | 2 | 0 |
| $u_{7}$ | 0 | 1 | 1 | 2 | 0 | 2 | 1 | 0 | 1 |
| $u_{8}$ | 0 | 0 | 0 | 2 | 1 | 1 | 1 | 1 | 0 |
| $u_{9}$ | 2 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |

$$
\operatorname{direct}(a, b)=1-\frac{\left|\left\{\left(u, u^{\prime}\right): d(u) \neq d\left(u^{\prime}\right) \wedge a(u) \neq a\left(u^{\prime}\right) \wedge b(u) \neq b\left(u^{\prime}\right)\right\}\right|}{\left|\left\{\left(u, u^{\prime}\right): d(u) \neq d\left(u^{\prime}\right) \wedge\left(a(u) \neq a\left(u^{\prime}\right) \vee b(u) \neq b\left(u^{\prime}\right)\right)\right\}\right|}
$$

# Rough Sets in Data Mining \& Databases: <br> Foundations \& Applications 

Deployment of Rough Set Methods

## Case Study: MRI Segmentation

The source of conditional attributes
T1

(relaxation time 1) (relaxation time 2) (proton density)

Decision
Phantom

(tissue type)

## Preparing Decision Table $(\mathrm{U}, \mathrm{A} \cup\{\mathrm{d}\})$

- Records in U correspond to the voxels
- Columns in A correspond to the voxels' attributes extracted from the images
- Decision d corresponds to the voxels' tissue types taken from the phantom

|  | 10 0 0 10 -1 | $\begin{aligned} & 8 \\ & \stackrel{D}{0} \\ & 10 \\ & \text { N } \end{aligned}$ | $\begin{aligned} & \text { D } \\ & 0.0 \\ & 10 \\ & 0 \end{aligned}$ | $$ |  | $\begin{aligned} & \text { Non } \\ & \substack{3 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \omega \\ \hline} \end{aligned}$ |  |  | $\begin{gathered} 5 \\ 2 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ \hline \end{gathered}$ | $\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & 0 \\ & y \\ & \text { IG } \end{aligned}$ |  | $\begin{aligned} & 5 \\ & 0.3 \\ & 0 . \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & \text { n } \\ & \substack{2 \\ 1 \\ N \\ N \\ \hline} \end{aligned}$ |  |  |  | $\begin{aligned} & n \\ & 0 \\ & 03 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & n \\ & 0 \\ & 3 \\ & 3 \\ & 1 \\ & 1 \\ & y \end{aligned}$ | n | $\begin{aligned} & n \\ & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | 产 | 0 0 0 0 0 0 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| voxel(80;18) | 0 | 0 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | WM |
| voxel(81;18) | 0 | 0 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | WM |
| voxel(82;18) | 0 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 3 | 2 | 1 | 3 | 1 | 1 | WM |
| voxel(83;18) | 0 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | WM |
| voxel(114;23) | 1 | 0 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 3 | 3 | 1 | 3 | 3 | 1 | WM |
| voxel(115;23) | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 3 | 3 | 1 | 3 | 3 | 1 | WM |
| voxel(116;23) | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 3 | 2 | 1 | 1 | 1 | 1 | WM |
| voxel(62;24) | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 3 | 2 | 1 | 2 | 3 | 1 | WM |
| voxel(63;24) | 1 | 0 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 3 | 3 | 1 | 2 | 3 | 1 | WM |
| voxel(64;24) | 1 | 1 | 1 | 3 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 3 | 1 | GM |
| voxel(65;24) | 1 | 1 | 0 | 3 | 2 | 2 | 3 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 3 | 2 | 1 | 3 | 1 | GM |
| voxel(66;24) | 1 | 1 | 1 | 3 | 1 | 2 | 3 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | GM |
| voxel(67;24) | 1 | 0 | 1 | 3 | 1 | 2 | 3 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 1 | CSF |

## Accuracy \& Approximation Degree



## „Granular" Attribute Selection


S. Widz: Ensembles of Approximate Decision Reducts in Classification Problems. PhD Thesis, Polish Academy of Sciences 2017

## Rough Sets in KDD



# Rough Sets in Data Mining \& Databases: <br> Foundations \& Applications 

Ensembles of Reducts

## "Good" Ensembles of Reducts

- Reducts with minimal cardinalities (or rules)
- Reducts with minimal pairwise intersections
- Reducts that „cooperate" in decision making



## Challenge:

How to modify the existing attribute reduction methods to search for such „good" ensembles

## Case Study: Coal Mine Monitoring



## Example of Optimization Goal

- Ensembles of reducts should all together contain relatively many attributes but with small amount of attributes that they share
- Good for ensembles of classifiers diversity improves predictive performance
- And for information representation - more complete knowledge about dependencies
- And for domain experts - lower risk of a complete removal of important attributes


## Approximate $\partial$-reducts that „cooperate"

- Irreducible subsets of attributes $B$ and $C$ such that:

$$
\forall_{\mathrm{u} \in \mathrm{U}} \partial_{\mathrm{B}}(\mathrm{u}) \cap \partial_{\mathrm{C}}(\mathrm{u})=\partial_{\mathrm{A}}(\mathrm{u})
$$

- Each subset can lose some $\partial$-information but the same $\partial$-information cannot be lost by both of them

| a1 | a2 | a3 | a4 | a5 | d |
| :--- | :--- | :--- | :--- | :--- | :--- |
| No | No | No | No | No | green |
| No | No | Yes | No | Yes | green |
| No | No | Yes | No | No | red |
| $\Rightarrow$ No | Yes | No | Yes | No | red |
| $\Rightarrow$ No | Yes | No | No | No | blue |
| Yes | No | Yes | No | Yes | blue |

IF a1 = No AND a2 = Yes AND a3 = No THEN d = blue OR d = red
IF a3 = No AND a4 = No AND a5 = No THEN d = blue OR d = green

## Definition (Decision bireduct)

Let $\mathbb{A}=(U, A \cup\{d\})$ be a decision system. A pair $(B, X)$, where $B \subseteq A$ and $X \subseteq U$, is called a decision bireduct, if and only if $B$ discerns all pairs $i, j \in X$ where $d(i) \neq d(j)$, and the following properties hold:
(1) There is no $C \subsetneq B$ such that $C$ discerns all pairs $i, j \in X$ where $d(i) \neq d(j)$;
(2) There is no $Y \supsetneqq X$ such that $B$ discerns all pairs $i, j \in Y$ where $d(i) \neq d(j)$.

## Some intuition

A decision bireduct $(B, X)$ can be regarded as an inexact functional dependence linking the subset of attributes $B$ with the decision $d$ in a degree $X$, denoted by $B \Rightarrow x d$. The objects in $U \backslash X$ can be treated as the outliers. The objects in $X$ can be used to learn a classifier based on $B$ from data.

# Rough Sets in Data Mining \& Databases: <br> Foundations \& Applications 

Industry Software Case Study 1

## Analytical Database Engine - Infobright (2005-2017)



## INFOBR!GHT"ロB

OUR SOLUTIONS / INFORMATION TECHNOLOGY SOLUTIONS

## Scalable Big Data Analytics



Overview

## Polystar

Polystar

## 1

Ignite's Infobright DB-Architecture Overview

Ignite's Infobright DB powers applications to perform interactive, complex queries resulting in better, faster business decisions. It is a high performance, scalable solution for storing and analyzing large volumes of machine-generated data at a lower cost and significantly less administrative effort than other database solutions.

High Performance Data Analytics for Better, Faster Business Decisions at a Low Cost
Powered by our innovative Knowledge Grid architecture, Infobright DB is easy to implement and manage - helping you get the answers your business users need at a price you can afford.

- High Performance: Sub second response times for complex ad-hoc queries
- Scalable: Load terabytes of data per hour and scale to petabytes of data
- Low Cost High ROI: No need for complex hardware and storage infrastructure
- Load and Go: Infobright DB doesn't require data partitioning, tuning or index creation - just load and go with your existing schemas


## SELECT MAX(A) FROM T WHERE B > 15

| T ( $\sim 350 \mathrm{~K}$ rows) |  | $B>15$ |
| :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { Pack A1 } \\ & \hline \text { Min }=3 \\ & \text { Max }=25 \end{aligned}$ | $\begin{aligned} & \frac{\text { Pack B1 }}{\text { Min }=10} \\ & \text { Max }=30 \end{aligned}$ |  |
| $\begin{aligned} & \frac{\text { Pack A2 }}{\text { Min }=1} \\ & \text { Max }=15 \end{aligned}$ | $\begin{aligned} & \text { Pack B2 } \\ & \frac{\text { Min }=10}{} \\ & \text { Max }=20 \end{aligned}$ |  |
| $\begin{aligned} & \frac{\text { Pack A3 }}{M \text { Min }=18} \\ & \text { Max }=22 \end{aligned}$ | $\begin{aligned} & \text { Pack B3 } \\ & \hline \text { Min }=5 \\ & \text { Max }=50 \end{aligned}$ |  |
| $\begin{aligned} & \frac{\text { Pack A4 }}{M \text { Min }=2} \\ & \text { Max }=10 \end{aligned}$ | $\begin{aligned} & \text { Pack B4 } \\ & \hline \text { Min }=20 \\ & \text { Max }=40 \end{aligned}$ |  |
| $\begin{aligned} & \text { Pack A5 } \\ & \hline \text { Min }=7 \\ & M a x=26 \end{aligned}$ | $\begin{aligned} & \text { Pack B5 } \\ & \hline \text { Min }=5 \\ & \text { Max }=10 \end{aligned}$ |  |
| $\begin{aligned} & \hline \text { Pack A6 } \\ & \hline \text { Min }=1 \\ & \text { Max }=8 \end{aligned}$ | $\begin{aligned} & \text { Pack B6 } \\ & \begin{array}{l} \text { Min }=10 \\ \text { Max }=20 \end{array} \end{aligned}$ |  |

- I: Irrelevant Granules (Negative Region)
- S: Suspect Granules (Boundary Region)
- R: Relevant Granules (Positive Region)
- E: Exact Computation (necessary, if the final query result cannot be obtained only from the statistical snapshots)


## SELECT MAX(A) FROM T WHERE B > 15;


$[18,25] \rightarrow[18, Y], Y \in[22,25]$, after accessing A1 \& B1

## More About Generalized Decisions

- Decision values can take form of numbers, long strings and so on. In such cases, a generalized decision should be rather a kind of description:

$$
\partial_{B}^{*}(u)=\operatorname{description}\left(\partial_{B}(u)\right)
$$

- Description functions should allow to test whether a given decision value does not occur for a given set of objects (e.g: decision interval, Bloom filter).
- We should also expect monotonicity with respect to an imprecision function (e.g.: interval length):

$$
\operatorname{imprecision}\left(\partial_{B}^{*}(u)\right) \geq \operatorname{imprecision}\left(\partial_{A}^{*}(u)\right)
$$

# Rough Sets in Data Mining \& Databases: <br> Foundations \& Applications 

Industry Software Case Study 2

## New Query Execution Process



Gigabytes

Traditional Query Execution:

- long time to do computations
- lots of disk/memory/processing resources required

- hard to manage in data lake / data cloud environments

Querying on Data Summaries:

- orders of magnitude faster (original operations replaced by fast summary transformations)
- far less resources consumed
- original data remaining in-place



## Practical Use Cases

| Use Case | Improvements |
| :---: | :---: |
| Intrusion Detection | faster analytics $\Rightarrow$ <br> $\square$ improved reaction time $\qquad$ improved customer retention |
| Digital Advertising | richer sources of analytics $\Rightarrow$ improved quality of customer profiles increased click-thru customer revenue |
| Sensor-based Monitoring of Industry Processes | faster/deeper machine learning $\Rightarrow$ <br> $\square$ improved risk prediction efficiency <br> $\zeta$ lower cost of incorrect predictions |

One of the current deployments of the considered new engine assumes working with 30-day periods, wherein there are over 10 billions of new data rows coming every day and ad-hoc analytical queries are required to execute in 2 seconds.

## Single-Column Summaries

Examples of captured knowledge:

- Value 300 occurred 1120 times
- There were 4570 occurrences of values between 200 and 350 (including value 300)
- There were no occurrences of values between 40 and 60
- Values 0, 40, 60, 100, 200, 350 occurred at least once


On-load selection of borders between histogram bars resembles the tasks of discretization deeply considered in the theory of rough sets.

## Two-Column Summaries




$$
\begin{array}{lll}
p_{t}\left(r_{t}^{a}[1]\right)=\frac{26000}{6500}=\frac{2}{5} & p_{t}\left(r_{t}^{a}[2]\right)=\frac{7800}{65000}=\frac{3}{25} & p_{t}\left(r_{t}^{a}[3]\right)=\frac{31200}{65000}=\frac{12}{25} \\
p_{t}\left(r_{t}^{b}[1]\right)=\frac{1300}{65000}=\frac{1}{5} & p_{t}\left(r_{t}^{b}[2]\right)=\frac{1300}{65000}=\frac{1}{5} & p_{t}\left(r_{t}^{b}[3]\right)=\frac{3900}{65000}=\frac{3}{5}
\end{array}
$$

$$
p_{t}\left(r_{t}^{a}[1], r_{t}^{b}[3]\right)=\frac{20800}{65000}=\frac{8}{25} \Rightarrow
$$

$$
\tau_{t}\left(r_{t}^{a}[1], r_{t}^{b}[3]\right)=\frac{8 / 25}{2 / 5 \cdot 3 / 5}=\frac{4}{3}
$$

$$
\tau_{t}(a, b)=\frac{1-p_{t}\left(r_{t}^{a}[1], r_{t}^{b}[3]\right)}{1-p_{t}\left(r_{t}^{a}[1]\right) \cdot p_{t}\left(r_{t}^{b}[3]\right)}=\frac{1-8 / 25}{1-2 / 5 \cdot 3 / 5}=\frac{17}{19}
$$

|  | $\boldsymbol{r}_{t}^{a}[\mathbf{1}]$ | $\boldsymbol{r}_{t}^{a}[\mathbf{2 ]}$ | $\boldsymbol{r}_{t}^{a}[\mathbf{3}]$ |
| :---: | :---: | :---: | :---: |
| $\boldsymbol{r}_{t}^{b}[\mathbf{1}]$ | $\tau_{t}(a, b)$ | $\tau_{t}(a, b)$ | $\tau_{t}(a, b)$ |
| $\boldsymbol{r}_{t}^{b}[\mathbf{2}]$ | $\tau_{t}(a, b)$ | $\tau_{t}(a, b)$ | $\tau_{t}(a, b)$ |
| $\boldsymbol{r}_{t}^{b}[\mathbf{3}]$ | $4 / 3$ | $\tau_{t}(a, b)$ | $\tau_{t}(a, b)$ |

## How Accurate Calculations Do We Need in Knowledge Discovery?



# Rough Sets in Data Mining \& Databases: <br> Foundations \& Applications 

Additional Remarks \& Materials

## Lots of Other Things to Talk About

- Good background for approximate reasoning, knowledge representation, agent communication, etc.
- Powerful methods for hierarchical learning!
- Extending computational models: rough clustering, rough neurons, soft trees...
- Applications: Web and text analysis, finance, multimedia, biomedicine...

```
14- 11
Somperty Ffou
Rawntines
ismorixth
6ume
```

Rough Sets:
Selected Methods and Applications in Management and Engineering

## Literature \& Useful Links

- Three papers by Z. Pawlak and A. Skowron published in Information Sciences in 2007
- Materials from plenary panel at FedCSIS 2016: https://www.fedcsis.org/2016/plenary panel
- Materials from Rough Set Summer Schools: http://www.roughsets.org/roughsets/guides/
- Thousands of rough-set-related papers gathered at: http://rsds.univ.rzeszow.pl/
- L.S. Riza et al.: Implementing Algorithms of Rough Set Theory and Fuzzy Rough Set Theory in the R Package „RoughSets". Inf. Sci. 287: 68-89 (2014)
- S. Stawicki et al.: Decision Bireducts and Decision Reducts A Comparison. Int. J. Approx. Reasoning 84: 75-109 (2017)
- A. Janusz and D. Ślęzak: Rough Set Methods for Attribute Clustering and Selection. Applied Artificial Intelligence 28(3): 220-242 (2014)
- A. Janusz et al.: Predicting Seismic Events in Coal Mines Based on Underground Sensor Measurements. Eng. Appl. of AI 64: 83-94 (2017)
- D. Ślęzak et al.: Two Database Related Interpretations of Rough Approximations: Data Organization and Query Execution. Fundam. Inform. 127(1-4): 445-459 (2013)
- D. Ślęzak et al.: A New Approximate Query Engine Based on Intelligent Capture and Fast Transformations of Granulated Data Summaries. J. Intell. Inf. Syst. (2017) [Open Access]


## Picture of Professor Zdzisław Pawlak


taken from the slides prepared by Professor Andrzej Skowron

## ( ) D SECURITY

## End of Part I

slezak@mimuw.edu.pl<br>arek.wojna@securityondemand.com

